SOP 24

Calculation of the fugacity of carbon dioxide in the pure gas or in air.

1. Scope and field of application

This procedure describes a method for the calculation of the fugacity of carbon dioxide in the pure gas or in air. The fugacity, $f(CO_2)$, is expressed either in Pascals or in atmospheres (Note 1).

2. Definition

The chemical potential (μ_B) of an individual component of a vapor phase can be expressed in terms of its fugacity (f_B) . This is defined by the equation

$$RT \ln f_{\rm B} = \mu_{\rm B} - \lim_{p \to 0} (\mu_{\rm B} - RT \ln(x_{\rm B}p/p^{\circ}))$$
 (1)

where x_B is the mole fraction of B in the gaseous mixture and thus $x_B p$ is the partial pressure of B (p_B) in the vapor phase and p° is astandard pressure (typically 101325 Pa, *i.e.* 1 atm). The term

$$\lim_{p \to 0} \left(\mu_{\rm B} - RT \ln(x_{\rm B} p/p^{\circ}) \right) \tag{2}$$

is thus a standard chemical potential, $\mu_B^{\circ}(T)$.

3. Principle

The vapor phase fugacity of either a pure gas $(x_{\rm B}=1)$ or of a component in a mixture of gases can be calculated from the equation

$$f_{\rm B} = x_{\rm B} p \exp \left(\int_0^p \frac{(V_{\rm B} - RT/p')dp'}{RT} \right) . \tag{3}$$

March 17, 1997 Version 2.12

^{1 1} atm = 101325 Pa.

 $V_{\rm B}$ is obtained from

$$V_{\rm B} = \left(\frac{\partial V}{\partial n_{\rm B}}\right)_{T, p} , \qquad (4)$$

where V is given by an equation of state for the vapor:

$$V = f(T, p) . (5)$$

3.1 The ideal gas equation

The simplest equation of state is the expression for a perfect gas mixture

$$V = (\sum_{\mathbf{B}} n_{\mathbf{B}}) RT/p .$$
(6)

The integral in equation (3) is then equal to zero and

$$f_{\rm B} = x_{\rm B} p \ . \tag{7}$$

3.2 The virial equation

More generally the equation of state can be represented by a virial expression:

$$\frac{pV_{\rm B}}{RT} = 1 + \frac{B(T)}{V_{\rm B}} + \frac{C(T)}{V_{\rm B}^2} + \dots$$
 (8)

This equation, truncated after the second virial coefficient is usually adequate to represent p–V–T properties at pressures up to a few atmospheres. It also has the advantage that the coefficient B(T) can be related to the intermolecular potential energy function of the molecules concerned.

In a mixture of gases,

$$B(T) = \sum_{l} \sum_{m} x_{l} x_{m} B_{lm}(T) , \qquad (9)$$

where B_{lm} = B_{ml} . The total volume can then be written

$$V = \sum_{k} n_{k} V_{k} = \sum_{k} n_{k} \frac{RT}{p} + \frac{\sum_{l} \sum_{m} n_{l} n_{m} B_{lm}(T)}{\sum_{k} n_{k}} .$$
 (10)

The partial molar volume of an individual component

$$V_{\rm B} = \frac{RT}{p} - \frac{\sum_{l} \sum_{m} n_{l} n_{m} B_{lm}(T)}{\left(\sum_{k} n_{k}\right)^{2}} + \frac{2\sum_{m} n_{m} B_{\rm Bm}(T)}{\sum_{k} n_{k}}$$
(11)

Version 2.12 March 17, 1997

and thus

$$V_{\rm B} = \frac{RT}{p} + \sum_{l} \sum_{m} x_{l} x_{m} (2B_{\rm Bm}(T) - B_{lm}(T)) p \quad . \tag{12}$$

The fugacity is then given by

$$f_{\rm B} = x_{\rm B} p \exp \left(\frac{\sum_{l} \sum_{m} x_{l} x_{m} (2B_{\rm Bm}(T) - B_{lm}(T)) p}{RT} \right)$$
 (13)

For a pure gas this reduces to

$$f_{\rm B} = p \exp\left(\frac{B_{\rm BB}(T)p}{RT}\right) , \qquad (14)$$

where $B_{BB}(T)$ is the virial coefficient for the pure gas B.

A further particular case of equation (13) is the expression for a component of a binary mixture

$$f_{\rm B} = x_{\rm B} p \exp\left(\frac{(B_{\rm BB}(T) + 2x_{\rm C}^2 \delta_{\rm B-C}(T))p}{RT}\right)$$
, (15)

where

$$\delta_{\rm B-C} = B_{\rm BC} - \frac{1}{2}(B_{\rm BB} + B_{\rm CC}) \ .$$
 (16)

Many of the cross virial coefficients for the practical computation of fugacity in vapor mixtures have never been measured experimentally. However a number of empirical approaches can be used.

The simplest of these is the Lewis and Randall rule

$$f_{\rm B} = x_{\rm B} f_{\rm B}^* \,, \tag{17}$$

where $f_{\rm B}^*$ is the fugacity of pure component B at the same temperature and total pressure as the mixture—equation (14).

An alternate method of predicting B(T), based on statistical-mechanical arguments, is to use the expression

$$B(T) = 2\pi L \int_0^\infty [1 - \exp\{-u(r)/kT\}] r^2 dr , \qquad (18)$$

where L is the Avogadro constant and k the Bolzmann constant. Here, u(r)—the pair-interaction energy—is assumed to depend only on the separation r of the centers of mass of two molecules.

March 17, 1997 Version 2.12

4. Calculation and expression of results

4.1 Virial coefficient of pure carbon dioxide

The first virial coefficient of CO_2 , $B(CO_2, T)$, is given by the expression (Weiss, 1974) which is based on values reported by Levelt-Sengers, Klein, & Gallagher (1971)

$$\frac{B(\text{CO}_2, T)}{\text{cm}^3 \cdot \text{mol}^{-1}} = -1636.75 + 12.0408 \left(\frac{T}{\overline{K}}\right)
-3.27957 \times 10^{-2} \left(\frac{T}{\overline{K}}\right)^2 + 3.16528 \times 10^{-5} \left(\frac{T}{\overline{K}}\right)^3, \quad (19)$$

where 265 < (T/K) < 320.

This expression can then be used in equation (14) to calculate the fugacity of pure CO_2 provided that the pressure and temperature of the CO_2 are known.

4.2 Virial coefficient of carbon dioxide in air

In addition, Weiss used the Lennard-Jones (6–12) potential to estimate u(r) and hence calculate values for δ_{BC} for the binary mixture: CO_2 – air. He found that the temperature dependence of this parameter is represented by the equation

$$\frac{\delta(\mathrm{CO}_2 - \mathrm{air})}{\mathrm{cm}^3 \cdot \mathrm{mol}^{-1}} = 57.7 - 0.118 \left(\frac{T}{\mathrm{K}}\right) , \qquad (20)$$

where 273 < (T/K) < 313.

This expression can then be used in equation (15), together with equation (19), to calculate the fugacity of CO_2 in air.

4.3 Example calculations

4.3.1 Fugacity of pure
$$CO_2$$

$$T = 298.15 \text{ K}$$
;

$$p = 101.325 \text{ kPa} (1 \text{ atm})$$
.

Then

$$B(T) = -123.2 \text{ cm}^3 \cdot \text{mol}^{-1}$$

$$f(\text{CO}_2) = 101325 \exp\left(\frac{-123.2 \times 10^{-6} \times 101325}{8.31451 \times 298.15}\right)$$

= 100.816 kPa,

or

$$f(\text{CO}_2) = 100.816/101.325 = 0.99498 \text{ atm}$$
 .

Version 2.12 March 17, 1997

4.3.2 Fugacity of
$$CO_2$$
 in air
$$T = 298.15 \text{ K};$$

$$p = 101.325 \text{ kPa } (1 \text{ atm});$$

$$x(CO_2) = 350 \times 10^{-6}.$$
 Then
$$B(T) = -123.2 \text{ cm}^3 \cdot \text{mol}^{-1},$$

$$\delta(CO_2 - \text{air}) = 22.5 \text{ cm}^3 \cdot \text{mol}^{-1},$$

$$f(CO_2) = 350 \times 10^{-6} (101325) \times$$

$$\exp\left(\frac{(-123.2 \times 10^{-6} + 2(1 - 350 \times 10^{-6})^2 (22.5 \times 10^{-6})) \times 101325}{8.31451 \times 298.15}\right),$$

$$= 35.35 \text{ Pa} \quad (348.9 \times 10^{-6} \text{ atm}).$$

References

- Dymond, J. H. & E. B. Smith (1969) Virial coefficients of gases: a critical compilation. Oxford Science Research Papers 2, Clarendon Press, Oxford.
- Guggenheim E. A. (1967) *Thermodynamics. An advanced treatment for chemists and physicists*. 5th edn. North-Holland, 390 pp.
- Hirschfelder, J. O., C. F. Curtiss & R. B. Bird (1954) *Molecular theory of gases and liquids*. Wiley, New York.
- IUPAC (1988) Quantities, units and symbols in physical chemistry. Prepared by I. Mills, Blackwell Scientific Publications, Oxford.
- Levelt Sengers J. M. H., M. Klein & J. S. Gallagher (1971)
 Pressure-volume-temperature relationships of gases: virial coefficients. Heat Division, U. S. National Bureau of Standards. AEDC TR-71-39.
- McGlashan, M. L. (1979) *Chemical Thermodynamics*. Academic Press, 345 pp.
- Weiss R. F. (1974) Carbon dioxide in water and seawater: the solubility of a non-ideal gas. *Marine Chemistry* **2**, 203–215.

March 17, 1997 Version 2.12